rsmatch - Matching Methods for Time-Varying Observational Studies
Implements popular methods for matching in time-varying observational studies. Matching is difficult in this scenario because participants can be treated at different times which may have an influence on the outcomes. The core methods include: "Balanced Risk Set Matching" from Li, Propert, and Rosenbaum (2011) <doi:10.1198/016214501753208573> and "Propensity Score Matching with Time-Dependent Covariates" from Lu (2005) <doi:10.1111/j.1541-0420.2005.00356.x>. Some functions use the 'Gurobi' optimization back-end to improve the optimization problem speed; the 'gurobi' R package and associated software can be downloaded from <https://www.gurobi.com> after obtaining a license.
Last updated 9 months ago
causal-inferencelongitudinal-analysismatchingobservational-datatime-varying
4.30 score 2 stars 5 scripts 200 downloadsmildsvm - Multiple-Instance Learning with Support Vector Machines
Weakly supervised (WS), multiple instance (MI) data lives in numerous interesting applications such as drug discovery, object detection, and tumor prediction on whole slide images. The 'mildsvm' package provides an easy way to learn from this data by training Support Vector Machine (SVM)-based classifiers. It also contains helpful functions for building and printing multiple instance data frames. The core methods from 'mildsvm' come from the following references: Kent and Yu (2022) <arXiv:2206.14704>; Xiao, Liu, and Hao (2018) <doi:10.1109/TNNLS.2017.2766164>; Muandet et al. (2012) <https://proceedings.neurips.cc/paper/2012/file/9bf31c7ff062936a96d3c8bd1f8f2ff3-Paper.pdf>; Chu and Keerthi (2007) <doi:10.1162/neco.2007.19.3.792>; and Andrews et al. (2003) <https://papers.nips.cc/paper/2232-support-vector-machines-for-multiple-instance-learning.pdf>. Many functions use the 'Gurobi' optimization back-end to improve the optimization problem speed; the 'gurobi' R package and associated software can be downloaded from <https://www.gurobi.com> after obtaining a license.
Last updated 2 years ago
distributional-datamultiple-instance-learningordinalsvmweakly-supervised-learning
3.80 score 3 stars 42 scripts 147 downloads